Running Head: Investigating Mobile Privacy

Investigating Mobile Privacy: Browser Fingerprinting on Privacy-focused Mobile Operating Systems
Noah Zoarski
Purdue University CNIT
CNIT32200: Research Methodology and Design
Dr. William Ledbetter

November 27, 2023

Investigating Mobile Privacy
Table of Contents
TADIE OF CONLENES. ... ittt ettt ettt e et e bt e e a bt e bte et e e st e eabeeseesate e beeenbeenseesabeenseesnneeneas 1
IIEEOAUCTION. ...ttt ettt ettt et e b et e e et e s ae e bt e et e eb e et e eaeesb e e bt esbeeseenbeentesbeenbeennens 2
LItEIatUre REVIEWiiiiiiiieitie ettt ettt et ettt e bt e et e eshe e e et e e bt e sabeesbeeeabeasseesateesbeeenbeanseesnneas 3
IMEENOAOLOZYvtieitieiie ettt ettt et e et e e s et e ebeesateesbeessbeensaessaeanseessseenseessseansaansseenseensneanseanssennseens 7
ANalysis and INETPTEIALION.ccviiiiiieieieeeiiee ettt e etee et e e st eeestaeeesaaeeesbeessaeessseeessseeessseeessseeensseessseenns 8
Findings and IMPIICATIONS.cccuiiriiiiieeiie ettt ettt e et e e e taeebeesaaeenseensaesnseenseeenseensnas 10
LB 3 10) B0 a2 o] 1| 2P USRRTRRRURR 11

Investigating Mobile Privacy

Introduction

As the implications of poor security and data privacy are becoming increasingly apparent in users'
everyday lives, the value gained by researching the mechanisms that maintain regular user privacy cannot be
overstated. Browser fingerprinting is a sophisticated online tracking technique that leverages a tremendous
amount of unique data points captured from a user’s browsing session in order to identify them online,
typically for advertising and content delivery purposes. Characteristics such as, but certainly not limited to,
operating systems, windowing systems and window resolution, browser types and engines, installed fonts,
timezone, and even battery percentage are combined to create a unique 'fingerprint' of a user. Unlike cookies,
the covert and insidious nature of these methods allows fingerprinting to exist in a regulatory gray area and
operate without the user’s knowledge or consent, eluding even the most stringent legal definitions of privacy

like the CPA and GDPR.

This research paper aims to recognize an underrepresented and highly relevant user base not
previously considered in publications on browser or device fingerprinting: GrapheneOS and LineageOS
users. Graphene and LineageOS are privacy-forward forks of the Android codebase that come bundled with
their own custom browsers preinstalled. Laperdrix et al. have already demonstrated how browsers on mobile
appliances like the Apple iPhone and Android devices prove more resilient to modern fingerprinting
techniques than their desktop counterparts due to the homogeneous environment and minimal configurations
allowed by Apple or outright reliance on Google’s Chromium—an established privacy browser when
configured appropriately. While most mobile users will continue to use browsers such as Apple Safari and
Google Chromium, it is crucial include privacy-forward distributions like GrapheneOS and LineageOS in
our research. To not only underscore the privacy-committed by ensuring their safety and security, but also to
dignify their contribution in driving forward privacy enhancements that have the potential to benefit broader

digital populations.

Investigating Mobile Privacy

GrapheneOS is of particular focus in this study for its ubiquity and reputation among fringe
privacy-conscious users. LineageOS, under less of a limelight, will also be examined for similar reasons.
While both projects promise privacy enhancements to the overall Android codebase, the extent to which

these mechanisms are implemented has not yet been well defined.

While existing research suggests improved fingerprinting resilience among mobile browsers, the
privacy-focused operating systems we seek to investigate might not philosophically align with proven
anti-fingerprinting models. Unlike the mobile browsers that proved successful in Laperdrix et al. and
Hraska’s 2016 studies, Graphene and LineageOS offer greater user autonomy in system configuration, which
could imply a more unique fingerprint, making the operating system’s default browser a prime target for

research.

With respect to the upstanding publications that came before this, the proposed study is largely
replicative. Looking to implement novel technologies to measure more modern characteristics for
fingerprinting, technologies such as CreepJS and FingerprintJS will be connected to, instead of self-hosting a
service or using a script to fingerprint browsers to take measurements, eliminating a potential need for
software development. Furthermore, Unblocked Web will be deployed to aid in the controlled deployment of
the browsing environments, thus eliminating the need for a Google Pixel cell phone. Furthermore, relevant

formulae, such as Shannon’s Formula for entropy, will be applied similarly to HraSka’s 2016 study.

Flawedworld, an Android developer and significant contributor to the GrapheneOS codebase was
contacted by the author regarding an outstanding issue on GitHub, and was incredibly helpful in sharing
resources on fingerprinting and browser technologies. Certain suggestions from Flawedworld will be
implemented in the study, such as using CreepJS, Fingerprint]S, and Unblocked Web, which will

undoubtedly contribute to the study’s validity and reproducibility.

Investigating Mobile Privacy

By narrowing the focus of the study to privacy-focused mobile distributions, this research seeks to
thoroughly examine the extent of these operating systems’ privacy capabilities. While these operating
systems are lauded for their privacy and popularity among enthusiasts, little evidence has shown that the
Vanadium or Jelly browsing experience is actually any more private than Android’s out-of-the-box. In fact,
as far as we know, it could be worse. The findings of this study are intended to inform the privacy-concerned
decision when settling on a mobile operating system by continuing to explore the extent of modern

fingerprinting capabilities.

Literature Review

A breadth of publications since 2010 have contributed substantially to the space of web browser
security and fingerprinting. A 2010 study from an EFF article published by Peter Eckersley analyzed
470,161 browser fingerprints collected using the Panopticlick website hosted by the EFF themselves. This
investigation explored the evolving impact of modern web technologies on browser fingerprinting. The study
found that while advancements in accessibility have certainly improved user experience as a whole,
accessibility often comes at the cost of user privacy. Of particular note, the study provided the first extensive
analysis of fingerprints from mobile devices, revealing that an astonishing 81% of mobile fingerprints were
entirely unique. The study emphasized the significance of HTTP headers and notably, the role of the HTMLS5
canvas element in device identification, as well as the role of cookies, IP addresses and supercookies when
trying to correlate user data. Utilizing the HTMLS canvas to create unique fingerprints is a theme that Hraska

further elaborated upon in his Master’s Thesis.

Laperdrix et al. (2016) also expanded upon the IEEE article, providing a comprehensive analysis of
fingerprints collected from mobile devices, revealing the unique challenges when fingerprinting mobile

devices.

Investigating Mobile Privacy

HraSka’s extensive research from about the same time unveiled the granular methods and features
used to uniquely identify users. By testing various combinations of browser features, Hraska identified the
smallest subset of browser features that produce substantial entropy. Entropy, in this context, refers to the
amount of uncertainty or randomness associated with the browser's features, making it a measure of a user's
uniqueness. To elaborate, every bit of entropy doubles the amount of distinguishable user states. Thus, an
entropy of 14.5 bits means there are approximately 27,000 unique browser states. So, the higher the entropy,
the greater the potential for unique identification. The study found that by employing just nine specific
browser features, a stand-out entropy measure of 16.5 bits can be reached, suggesting that even minimal data
exposure can lead to a high level of user identifiability. And by employing just three features—date and time,
user-agent, and window resolution—an entropy of 14.2 bits can be measured. Better yet, Hraska outlined all
the necessary mathematics used for normalizing datasets and calculating entropy that will be employed in
this replicative study.

It is important to note Laperdrix’ and Hraska’s observation of mobile devices being considerably
more resistant to fingerprinting than desktops. HraSka concluded that mobile devices exhibited less entropy,
and thus fewer unique fingerprints. This could be attributed to the homogeneous nature of mobile device
ecosystems, especially within certain jurisdictions like Apple's "Walled-Garden". Apple's ecosystem is
highly uniform, with many users employing similar configurations and software, thus reducing variations
and consequently, entropy. This uniformity inadvertently protects users from fingerprinting since the fewer
discrepancies there are between devices, the harder it becomes to single out any one in particular. This
particular mechanism of privacy is incidentally enhanced by the fact that Apple users have greater power in
numbers.

Users have recently flocked to platforms like Graphene and LineageOS with the anticipation of
escaping services that are suspected to harvest data and invade privacy. Their trust hinges on the expectation
that the OS, even if not primarily designed for web browsing, should provide a holistic private experience in

its operation, which includes browsing. After all, in an age defined by the internet, it is reasonable for users
5

Investigating Mobile Privacy
to expect that a smartphone—regardless of its primary use-case—would facilitate a private web browsing
experience.

The Lineage and GrapheneOS projects, like many other open-source projects, face unique challenges
in development. Besides just a lack of funding, one inherent challenge arises from the projects’ niche user
bases, which are primarily composed of technical hobbyists and privacy enthusiasts, thus lacking the power
in numbers seen with platforms like the iPhone. Furthermore, technical users and those who prefer
open-source software tend to exercise autonomy in their decision to deploy their own hardware and software,
which could contribute to even more entropy.

Looming over the prospect of Vanadium’s claim to privacy, GitHub Issue #181, raises significant
concern regarding the exposure of unique hardware IDs. The issue describes a vulnerability where devices
might leak a distinct fingerprint due to the exposure of hardware-related information. While a solution to

hardcode WebRTC device id salt has been proposed to mitigate this issue (Flawedworld, 2023), it has

not yet been implemented. This unresolved challenge is of particular relevance to our study, as it suggests
that the entropy of browser fingerprints for GrapheneOS users could be considerably higher than its
mainstream counterparts, and, in the worst case, render Vanadium ineffective for private browsing.

When a software exposes hardware IDs, it reveals far more unique user data than canvas
fingerprinting. Like a MAC address, such hardware identifiers are low-level and persistent unless changed,
which should triage the hardware ID issue with priority in the Vanadium backlog. The methods outlined in
publications prior are certainly capable of measuring hardware IDs, and should be reapplied to audit the
Vanadium and Jelly browsers. With mainstream browsers already implementing countermeasures like
fingerprinting alerts, it seems like GrapheneOS has sizable ground to cover.

As the digital ecosystem evolves, the methods of fingerprinting and fingerprinting prevention evolve
concurrently. Platforms like GrapheneOS stand at the vanguard of the privacy movement, and are certainly

expected to maintain the safeguards vital to user privacy. Considering the scope of fingerprinting

Investigating Mobile Privacy
capabilities, it becomes clear that GrapheneOS is due for a security audit. Future research, especially
focusing on platforms like GrapheneOS's Vanadium, is not merely beneficial—but imperative; not only to

the technical user, but to those who actually have something worth hiding.

Methodology

The proposed research methodology is designed to be inexpensive and easily replicated. By using an
array of advanced web technologies such as Unblocked Web, CreeplS, and Fingerprint]JS, measurements and
emulation will be capable of running almost headless, making the hardware requirements little to none. The
research methods will closely mimic Hraska’s for a comprehensive and familiar evaluation of Vanadium's
capabilities against browser fingerprinting, only replacing Hraska’s script with CreepJS and FingerprintJS to

minimize project scope.

Utilization of Unblocked Web: The primary function of Unblocked Web in this study is to emulate a
diverse range of browser environments. By simulating various operating systems and browsers, we aim to
create a comparative framework within which Vanadium's fingerprinting resistance can be assessed against
other popular browsers. This emulation can run headless and helps isolate the test environment. As a result,

data processing and normalization will be very straightforward.

Data Collection with CreepJS and FingerprintJS: CreepJS and FingerprintJS are employed to gather
detailed fingerprints from each emulated browser environment. These tools are still supported, and are
capable of extracting a wide array of data points, including, but not limited to, hardware IDs, canvas prints,
and user-agent strings. The use of websites as opposed to a local script will allow for a simple controlled and

systematic collection of fingerprint data as the emulated browsers from Unblocked Web access these sites.

Investigating Mobile Privacy

Analysis and Interpretation

The fingerprint data collected from Unblocked Web, CreepJS, and FingerprintJS will be of numerous
forms, each capable of attributing a unique amount of entropy to a browser. Initially, the fingerprints will be
cataloged into an organized structure where each entry corresponds to an observed set of browser
characteristics. These include, but are not limited to, items like hardware IDs, canvas prints, and user-agent
strings. This database will then become the foundation for a comparative analysis, wherein Vanadium's
fingerprinting data can be compared against the fingerprints from other browsers deployed using Unblocked
Web. Statistical methods will be employed to identify patterns and anomalies. Key metrics such as the
frequency of unique fingerprints and the prevalence of shared attributes across different browsers will be
meticulously computed. This analytical approach is integral to discerning the relative strength of Vanadium’s
fingerprinting resistance. It enables a nuanced understanding of how the browser’s privacy features perform

when exposed to the same tracking vectors as other browsers.

To quantify the distinctiveness of each browser's fingerprint gathered from our experiment using
Unblocked Web, CreeplS, and Fingerprint]JS, we apply Shannon's entropy formula. The process begins by

cataloging the unique fingerprints identified across the dataset. Each unique fingerprint, denoted as X
represents a specific combination of browser features, such as hardware IDs, canvas prints, and user-agent
strings.

The probability mass function P (xl,) is then derived from the frequency of each unique fingerprint in
the dataset. If we have observed a particular fingerprint X, in f ;out of N total fingerprints collected, the
probability P(xl,) is calculated as f i /N. This frequency-based probability reflects the likelihood of

encountering that specific browser fingerprint in the population of collected data.

Subsequently, the entropy H(x) of the entire system of fingerprints is calculated using the formula:

Investigating Mobile Privacy

H(X)=- Z P(x;)logyP(x;)

In practice, we execute this calculation programmatically, where each P(xl,) is determined by the

experimental data, and the sum is computed over all unique fingerprints. This calculation yields the entropy
H(x) in bits, which provides us with a metric for the average amount of information—or

unpredictability—present in the distribution of browser fingerprints.

By applying this mathematical approach to our experimental data, we are able to assess the
fingerprinting resistance of Vanadium and Jelly browsers quantitatively. The entropy measures serve as a

critical indicator in our analysis, revealing the effectiveness of browsers’ privacy-preserving mechanisms.
Findings and Implications

This research anticipates uncovering distinguishable patterns of fingerprinting resistance across
various browser environments and configurations, with a particular focus on GrapheneOS's Vanadium. The
expected findings should reveal how the entropy of Vanadium's and Jelly’s fingerprints compare to each
other and to those of mainstream browsers. Given the unresolved hardware ID leak on GrapheneOS, we
hypothesize that Vanadium may exhibit a higher entropy level than browsers on more conventional mobile
operating systems. This potential outcome would suggest a need for GrapheneOS developers to consider
additional privacy-preserving mechanisms, such as the proposed but not yet implemented hardcoding of

WebRTC device id salt.

The implications of these expected findings are several fold. First, should the hypothesis of higher

entropy in Vanadium's fingerprints hold true, it would underscore a critical vulnerability in the browser's

Investigating Mobile Privacy

capacity to protect against user tracking and identification. This would contradict the prevailing assumption
that privacy-focused mobile operating systems naturally offer superior anonymity. Still, Vanadium’s entropy
profile should be considered with and without the hardware ID measure, so that measurements will reflect

the efficacy of Vanadium with and without a WebRTC device id salt.

Furthermore, the analysis may inspire a broader discussion on the necessity and feasibility of salting
hardware IDs as a standard privacy practice. Such discourse could pave the way for more robust privacy
protections, not just for fringe users but for the digital ecosystem at large. It also serve as an empirical
foundation for privacy advocacy, emphasizing the importance of developing and implementing advanced

privacy features.

10

Investigating Mobile Privacy

Bibliography
Browser fingerprinting - Masters Thesis. (2018).

https://www.virpo.sk/browser-fingerprinting-hraska-diploma-thesis.pdf

Eckersley, P. (2010). How unique is your web browser? Privacy Enhancing Technologies, 1-18.

https://doi.org/10.1007/978-3-642-14527-8 1

GrapheneOS. (2022, May 11). Hardcode WebRTC device id salt for built in hardware on grapheneos
devices - issue #181 - grapheneos/vanadium. GitHub.

https://github.com/GrapheneOS/Vanadium/issues/181

Laperdrix, P., Rudametkin, W., & Baudry, B. (2016). Beauty and the beast: Diverting modern web
browsers to build unique browser fingerprints. 2016 IEEE Symposium on Security and Privacy

(SP). https://doi.org/10.1109/sp.2016.57

Xu, Q., Zheng, R., Saad, W., & Han, Z. (2016). Device fingerprinting in Wireless Networks:
Challenges and Opportunities. /[EEE Communications Surveys &, Tutorials, 18(1), 94-104.

https://doi.org/10.1109/comst.2015.2476338

Zoarski, N., & flawedworld. (2023, October 27). Personal communication. personal.

11

